1963年。
由于阿諾德對相空間的研究已經(jīng)走火入魔,看到哪個問題都想用這樣的思路來解決。
他盯上了伽羅華理論,一元五次方程沒有有限根式解的證明。
阿諾德心想,可以拿出一個五次方程,然后對系數(shù)進行變化,然后在相空間上描繪出點來。
“方程系數(shù)繞一個環(huán)路回到原點可能會造成多項式方程根的置換?!?p> 定理是,兩個環(huán)路對易式定義的環(huán)路會造成根空間里的環(huán)路。
這樣問題就來了,如果根的置換的對易式還是根的置換的話,那代數(shù)方程解的公式就必須是嵌套根式的樣子。
若根的置換的對易式之對易式一直是根的置換,那解的根式表達就必須是無限嵌套的樣子。
五次方程沒有有限根式解由此得到了一個拓撲學角度的證明,思路清晰,比伽羅華理論好懂多了。