第二百五十一章 哥德巴赫猜想
蘇陌瞬間覺(jué)得自己好像是被什么人安排了!
“幾月份啊?”
蘇陌握住電話,詢問(wèn)了一下菲爾茲獎(jiǎng)的領(lǐng)獎(jiǎng)時(shí)間。
“差不多三月份吧!”
周博查找了一下日歷,慢慢地開(kāi)口道。
“現(xiàn)在已經(jīng)是一月了,還有三個(gè)月左右的時(shí)間,萬(wàn)一我推導(dǎo)不出來(lái)怎么辦?”
蘇陌估計(jì)了下時(shí)間,自己還有不少的事情要做,雖然這個(gè)菲爾茲獎(jiǎng)很吸引人,但是說(shuō)實(shí)話,自己快速趁著這段時(shí)間賺錢(qián)才是真的。
“沒(méi)事,老師其實(shí)已經(jīng)準(zhǔn)備了,這次主要是想給你點(diǎn)壓力!”
周博淡然一笑,接著道:“對(duì)于真正的天才,還是要有足夠多的壓力,才能夠激發(fā)他們的創(chuàng)造力?!?p> “我待會(huì)就沒(méi)什么事情,過(guò)去找找老師吧!”
蘇陌說(shuō)到這看了下時(shí)間,現(xiàn)在才下午兩點(diǎn)鐘左右。
過(guò)去一下差不多四點(diǎn)多的時(shí)間。
剛好可以跟老師討論一下研究的方向和研究點(diǎn)。
“可以,下午的時(shí)候我去預(yù)約下老師,你看看你有什么想法?”
周博說(shuō)著就直接掛斷了電話。
蘇陌在公司里面稍微坐了一陣子。
事情大部分都已經(jīng)處理完了。
他出門(mén)直接打輛車(chē)朝著水木大學(xué)趕去。
說(shuō)實(shí)話,他現(xiàn)在覺(jué)得,自己要是少了車(chē)還真的不方便。
自己這公司距離水木大學(xué)雖然不是很遠(yuǎn)。
但是每次打車(chē)都要花不少錢(qián)。
蘇陌來(lái)到了水木大學(xué)。
進(jìn)入水木大學(xué)之后,蘇陌直接沖向數(shù)學(xué)實(shí)驗(yàn)室。
楊濟(jì)老師已經(jīng)坐在里面,似乎在推導(dǎo)什么東西。
“楊老師好!”
蘇陌來(lái)到了之后,朝著楊濟(jì)躬身行禮,熱切地打著招呼。
“蘇陌,你來(lái)了?”
楊濟(jì)拿出手中的鉛筆,在面前的草稿紙上簡(jiǎn)單的寫(xiě)寫(xiě)畫(huà)畫(huà),慢慢地抬起頭看向面前的蘇陌。
“老師,您這是在推導(dǎo),哥德巴赫猜想?”
說(shuō)到這的時(shí)候,蘇陌的嘴角浮現(xiàn)出幾分驚愕。
要知道哥德巴赫猜想在陳景潤(rùn)證明了1+2之后,就再也沒(méi)有任何進(jìn)展。
以至于1+1這個(gè)問(wèn)題,成為了史詩(shī)級(jí)大難題。
“你知道這個(gè)?”
楊濟(jì)看向面前的蘇陌,有些詫異地說(shuō)道。
“哥德巴赫猜想,在1742年的時(shí)候,哥德巴赫給大數(shù)學(xué)家歐拉的信中提出了這么一個(gè)猜想,任一大于2的整數(shù)都可寫(xiě)成三個(gè)質(zhì)數(shù)之和?!?p> “但是這個(gè)猜想,哥德巴赫自己卻沒(méi)有能力證明這個(gè)思想,只能夠給歐拉證明,可是這個(gè)猜想,歐拉就算是窮盡一生,也無(wú)法將其完全證明出來(lái)!”
“這個(gè)問(wèn)題被保留了下來(lái),直到現(xiàn)在,整個(gè)猜想經(jīng)過(guò)大數(shù)學(xué)家歐拉的梳理之后,已經(jīng)發(fā)生了變化?!?p> “任一大于5的整數(shù)都可寫(xiě)成三個(gè)質(zhì)數(shù)之和。(n>5:當(dāng)n為偶數(shù),n=2+(n-2),n-2也是偶數(shù),可以分解為兩個(gè)質(zhì)數(shù)的和;當(dāng)n為奇數(shù),n=3+(n-3),n-3也是偶數(shù)!”
蘇陌如實(shí)將整個(gè)哥德巴赫猜想的數(shù)據(jù)說(shuō)了出來(lái)。
“不錯(cuò),沒(méi)想到你竟然對(duì)數(shù)學(xué)的歷史了解的這么清楚!”
楊濟(jì)看向面前的蘇陌,頗為意外地說(shuō)道。
“我也就是平時(shí)涉獵比較廣泛一些罷了,所以知道這部分的想法,但是老師,你這好像證明的不是1+1的問(wèn)題?”
蘇陌看了一眼楊濟(jì)在證明的內(nèi)容。
楊濟(jì)也是微微頷首,然后將面前的內(nèi)容直接拿出來(lái),遞給蘇陌看。
“其實(shí)現(xiàn)在所謂的1+2這些東西,只是哥德巴赫猜想的一部分。之所以將這些的東西拆散成為一個(gè)個(gè)小問(wèn)題,其實(shí)最主要的原因還是大問(wèn)題實(shí)在是不好搞,沒(méi)有人推導(dǎo)得出來(lái)!”
“所以才會(huì)有人拆成無(wú)數(shù)個(gè)小問(wèn)題,然后想在里面尋求突破?!?p> “但是這樣的做法不免就有些舍本逐末了,說(shuō)實(shí)話,這里面的東西還多得很,就算是將所有的東西都證明出來(lái)了,那么也在還是理論推導(dǎo),在后面是否還有更大的問(wèn)題,也不曾可知!”
楊濟(jì)不緊不慢地說(shuō)著。
在他說(shuō)這些話的時(shí)候,蘇陌也是微微頷首。
他幾乎是瞬間就明白了楊濟(jì)老先生話語(yǔ)里面的意思。
很簡(jiǎn)單的意思。
將整個(gè)問(wèn)題直接拆散了來(lái)解決。
說(shuō)白了只是一種取巧的方法而已,但是并沒(méi)有從本質(zhì)上解決這個(gè)問(wèn)題。
“那老師的意思是,想要從根本的本源上來(lái)推導(dǎo)整個(gè)公式?”
蘇陌抬頭看向面前的楊濟(jì),有些疑惑道。
“哈哈,我可沒(méi)這么大的本事,要是從本源上推導(dǎo)這些的話,我還是差了一些水準(zhǔn),我能夠做的事情,也就是在前人的基礎(chǔ)上,加入了自己的一些理解!”
楊濟(jì)連忙擺了擺手,看向面前的蘇陌:“我現(xiàn)在推導(dǎo)的這些,是想將這些人的想法全部都整合起來(lái),看看能不能找到一些全新的算法,若是不可以的話,就想辦法將這些所有的算法都找到共性的點(diǎn),做一個(gè)整合!”
在學(xué)術(shù)圈里面,不乏這樣的方法。
面對(duì)哥德巴赫猜想的時(shí)候。
這么多年以來(lái),無(wú)數(shù)的人都是在不斷地證明。
1920年,挪威的布朗證明了“9 + 9”。
1924年,德國(guó)的拉特馬赫證明了“7 + 7”。
1932年,英國(guó)的埃斯特曼證明了“6 + 6”。
1937年,意大利的蕾西先后證明了“5 + 7”,“4 + 9”,“3 + 15”和“2 + 366”。
1938年,蘇聯(lián)的布赫夕太勃證明了“5 + 5”。
1940年,蘇聯(lián)的布赫夕太勃證明了“4 + 4”。
1956年,中國(guó)的王元證明了“3 + 4”。稍后證明了“3 + 3”和“2 + 3”。
1948年,匈牙利的瑞尼證明了“1+ c”,其中c是一很大的自然數(shù)。
1962年,中國(guó)的潘承洞和蘇聯(lián)的巴爾巴恩證明了“1 + 5”,中國(guó)的王元證明了“1 + 4”。
1965年,蘇聯(lián)的布赫夕太勃和小維諾格拉多夫,及意大利的朋比利證明了“1 + 3 ”。
1966年,中國(guó)的陳景潤(rùn)證明了“1 + 2 ”。
這些人都是在不斷地證明中,但是年代跨度久遠(yuǎn),而且證明的人都是按照自己的思路和想法在求證,所以這么算下來(lái),證明的方法五花八門(mén)。
基本上就沒(méi)有統(tǒng)一的方法。
當(dāng)然這種情況也是正常。
若是能夠?qū)⑺麄兯腥说姆椒ㄈ慷际崂硪槐?,找到合適統(tǒng)一的方法,那么這也算一個(gè)大的突破!
只有找到了統(tǒng)一的方法。
才能夠算是在這塊領(lǐng)域突破,形成了固定的理論指導(dǎo)。
楊濟(jì)老先生顯然就是在做這塊的事情。