第一百三十五章 歐拉與哥德巴赫的通信(數(shù)論)
1742年,哥德巴赫在一封寫(xiě)給歐拉的信中猜想每個(gè)大于或等于4的偶數(shù)可以寫(xiě)成兩個(gè)素?cái)?shù)之和。哥德巴赫猜想仍然沒(méi)有被證實(shí)。
但是哥德巴赫自己無(wú)法證明它,于是就寫(xiě)信請(qǐng)教赫赫有名的大數(shù)學(xué)家歐拉幫忙證明,但是一直到死,歐拉也無(wú)法證明。
因現(xiàn)今數(shù)學(xué)界已經(jīng)不使用“1也是素?cái)?shù)”這個(gè)約定,原初猜想的現(xiàn)代陳述為:任一大于5的整數(shù)都可寫(xiě)成三個(gè)質(zhì)數(shù)之和。(n>5:當(dāng)n為偶數(shù),n=2+(n-2),n-2也是偶數(shù),可以分解為兩個(gè)質(zhì)數(shù)的和;當(dāng)n為奇數(shù),n=3+(n-3),n-3也是偶數(shù),可以分解為兩個(gè)質(zhì)數(shù)的和)歐拉在回信中也提出另一等價(jià)版本,即任一大于2的偶數(shù)都可寫(xiě)成兩個(gè)質(zhì)數(shù)之和。
今日常見(jiàn)的猜想陳述為歐拉的版本。把命題“任一充分大的偶數(shù)都可以表示成為一個(gè)素因子個(gè)數(shù)不超過(guò)a個(gè)的數(shù)與另一個(gè)素因子不超過(guò)b個(gè)的數(shù)之和“記作“a+b“。1966年陳景潤(rùn)證明了“1+2“成立,即“任一充分大的偶數(shù)都可以表示成二個(gè)素?cái)?shù)的和,或是一個(gè)素?cái)?shù)和一個(gè)半素?cái)?shù)的和“。
今日常見(jiàn)的猜想陳述為歐拉的版本,即任一大于2的偶數(shù)都可寫(xiě)成兩個(gè)素?cái)?shù)之和,亦稱為“強(qiáng)哥德巴赫猜想”或“關(guān)于偶數(shù)的哥德巴赫猜想”。
從關(guān)于偶數(shù)的哥德巴赫猜想,可推出:任一大于7的奇數(shù)都可寫(xiě)成三個(gè)質(zhì)數(shù)之和的猜想。
后者稱為“弱哥德巴赫猜想”或“關(guān)于奇數(shù)的哥德巴赫猜想”。
若關(guān)于偶數(shù)的哥德巴赫猜想是對(duì)的,則關(guān)于奇數(shù)的哥德巴赫猜想也會(huì)是對(duì)的。
2013年5月,巴黎高等師范學(xué)院研究員哈洛德·賀歐夫各特發(fā)表了兩篇論文,宣布徹底證明了弱哥德巴赫猜想。