第三百二十五章 路德維希`施萊夫利思索高維空間問題(高維空間)
施萊夫利是瑞士的幾何學(xué)家,1814-1895年活了80多歲。
在1850年的時候,他開始深入思考一個很有意義的問題。
就是高維空間的問題。
他知道在亞里士多德時代,普遍人認(rèn)為世界是有3維空間的。
即使是有4維空間,也不容易想象。
但是,也不是不可以研究的。
這其中,可以用很都角度去研究高維度空間的問題。
研究立體幾何圖像,可以投影在2維平面中。所以研究4維物體,可以投影在三維空間中來研究。
很多東西,即使沒有辦法想象到,但也可以想到很多基本的東西,比如勾股定理在高維空間的計算中也是實用的。
而今天,施萊夫利想從最簡單的角度來想高維空間的問題,也是一種規(guī)律。
那就是單形,也就是幾何中最基本的形狀。0維單形是點,1維單形是線段,2維單形是三角形,3維單形是4面體等等。
按照以上來看,單形在0、1、2、3、4、5維空間中。
對應(yīng)單形點的個數(shù)分別為1、2、3、4、5.
對應(yīng)單形線的個數(shù)為1、3、6、10、15,這個可以數(shù)一數(shù)。
對于面、甚至體必然也是存在著同時也重要的,但是對此問題,很多數(shù)學(xué)家都犯了難,表示很難數(shù)。
而對施萊夫利,他找到一個奇妙的辦法,就是他突然發(fā)現(xiàn)1、3、6、10、15這個數(shù)字與楊輝三角中第三排的數(shù)字對應(yīng)。
不僅僅是這樣的數(shù)字跟高維單形的線的個數(shù)之后是吻合的,而且更厲害的是,楊輝三角中第四排和第五排的數(shù)字包含了面?zhèn)€數(shù)和體個數(shù)的信息。
施萊夫利找到很好的辦法,很簡單的得出了,對應(yīng)單形的面的個數(shù)0、1、4、10、20個。
對應(yīng)體的個數(shù)為0、0、1、5、15個,這個光靠想象的去數(shù),是很不容易的,但用楊輝三角特別容易得到。
甚至連4維體的個數(shù)為0、0、0、1、6等等。
施萊夫利知道研究高維度的很多問題可以用楊輝三角,只是楊輝三角本身他也需要思考一陣了。
如果楊輝三角有了這種能力,說明它有一種整合高維空間的能力。
所以他開始考慮高維楊輝三角,這成為他的習(xí)慣。但三維楊輝三角的繪制有困難。
他試圖想看看是不是有更多的東西會符合楊輝三角,同時把高維楊輝三角轉(zhuǎn)化成二維的楊輝三角問題。