拉普拉斯想去見大數(shù)學家達朗貝爾,達朗貝爾因為他是民科,拒絕見。
隨后拉普拉斯把自己的論文寄給了達朗貝爾。
達朗貝爾看后,看到這個論文研究關于液面曲率與液體表面壓強之間的關系的公式,覺得太非凡了,想親自見見他。
達朗貝爾見了拉普拉斯對拉普拉斯說:“我看到你研究曲面了,這個很有挑戰(zhàn)性。”
拉普拉斯說:“我們要找到曲面的真正特征,從這個特征上去準確研究曲面?!?p> 達朗貝爾說:“你找到的是什么特征?”
拉普拉斯說:“通常用相應的兩個曲率半徑來描述曲面,即在曲面上某點作垂直于表面的直線,再通過此線作一平面,此平面與曲面的截線為曲線?!?p> 達朗貝爾說:“那需要知道什么樣的曲率呢?”
拉普拉斯說:“在該點與曲線相切的圓半徑稱為該曲線的曲率半徑R1。通過表面垂線并垂直于第一個平面再作第二個平面并與曲面相交,可得到第二條截線和它的曲率半徑R2,用R1與R2可表示出液體表面的彎曲情況?!?p> 達朗貝爾說:“知道R1和R2有什么用?”
拉普拉斯說:“若液面是彎曲的,液體內(nèi)部的壓強p1與液體外的壓強p2就會不同,在液面兩邊就會產(chǎn)生壓強差△P= P1- P2,稱附加壓強?!?p> 拉普拉斯-貝爾特拉米算子。
拉普拉斯算子被定義為歐式空間的二階微分算子,定義為梯度和散度。
也可以推廣為定義在黎曼流形上的橢圓型算子。
橢圓型偏微分方程是偏微分方程的一個類型,簡稱橢圓型方程。
描述物理中的平衡穩(wěn)定狀態(tài),如定常狀態(tài)的電磁場、引力場和反應擴散現(xiàn)象等。
也可以推廣都非歐幾何空間,這時有可能是橢圓型算子、雙曲型算子,或超雙曲型算子。
閔可夫斯基空間中,拉普拉斯算子變成達朗貝爾算子。
達朗貝爾算子通常用了表達克萊因-高登方程以及思維波動方程。